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• We describe an object perception and perceptual learning system.
• The system is able to detect, track and recognize tabletop objects.
• The system learns novel object categories in an open-ended fashion.
• The Point Cloud Library is used in nearly all modules of the system.
• The system was developed and used in the European project RACE.
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a b s t r a c t

This paper describes a 3D object perception and perceptual learning system developed for a complex
artificial cognitive agent working in a restaurant scenario. This system, developed within the scope of
the European project RACE, integrates detection, tracking, learning and recognition of tabletop objects.
Interaction capabilities were also developed to enable a human user to take the role of instructor and
teach new object categories. Thus, the system learns in an incremental and open-ended way from user-
mediated experiences. Based on the analysis of memory requirements for storing both semantic and
perceptual data, a dual memory approach, comprising a semantic memory and a perceptual memory,
was adopted. The perceptual memory is the central data structure of the described perception and
learning system. The goal of this paper is twofold: on one hand, we provide a thorough description of
the developed system, starting with motivations, cognitive considerations and architecture design, then
providing details on the developed modules, and finally presenting a detailed evaluation of the system;
on the other hand, we emphasize the crucial importance of the Point Cloud Library (PCL) for developing
such system.1

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

One of the primary challenges of service robotics is the adap-
tation of robots to new tasks in changing environments, where
they interact with non-expert users. The European project RACE
(Robustness by Autonomous Competence Enhancement [1,2]),
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recently closed, assumed that versatility and competence enhance-
ment can be obtained by learning from experiences. The project
focused on acquiring and conceptualizing experiences about ob-
jects [3], scene layouts [4] and activities [5] as a means to enhance
robot competence over time thus achieving robustness. Stimuli for
learning can be collected, either autonomously by robots, or when
they receive appropriate feedback from users.

The functional components of the RACE architecture are
represented by boxes in Fig. 1. Each component may contain one
or more modules, which are implemented as nodes (or nodelets)
over the Robot Operating System (ROS) [6,7]. The Reasoning and
Interpretation component includes a temporal reasoner, a spatial
reasoner and a description logics reasoner. Perception contains
several modules for symbolic proprioception and exteroception,
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Fig. 1. A high-level overviews of the RACE architecture.
which generate occurrences. The Experience Management and
Conceptualization component pre-processes occurrences, extracts
relevant experiences, uses them to create new concepts and stores
these in the Memory component. The User Interface component
receives instructions from the user and relays them to the Planning
component. Planning is carried out using SHOP2, a Hierarchical
Task Network planner [8]. The produced plans are executed by the
Plan Execution Management component.

One of the challenges in this type of projects is to ground [9]
the semantic representations maintained by the robot, namely
the model of the world state and the learned concepts, into
the perception and action capabilities of the robot itself [10,11].
At least two types of grounding are involved here. For internal
symbols that refer to real-world objects (e.g. ‘‘mug23’’), the robot
must maintain a perception-mediated mapping of symbols to
objects. This is often called anchoring [12] and relies to some
extent on (visual) tracking capabilities at the perception level
and on semantic interpretation capabilities at the reasoning
level. For category symbols (e.g. ‘‘Mug’’), the robot must ground
their meanings on concrete observations of instances of the
categories. A related challenge is how to combine semantic
(i.e. symbolic, relational, logic-based) with perceptual (numeric,
pattern-based) representations, and how to store different types of
representations. After analyzing the requirements of the different
components of the RACE architecture, a key decision was made by
the project: instead of a single memory system, two independent
memory systemswould be used, one for semantic information (the
Semantic Memory) and the other for perceptual information (the
Perceptual Memory) [2].

Through perceptual learning capabilities, the developed object
perception system can be applied to open-ended environments.
In this case, ‘‘open-ended’’ means that the robot does not know
in advance which object categories it will have to learn, which
observations will be available, and when they will be available to
support this learning.

This kind of perception system must comprise a significant
number of software modules, which must be closely coupled in
their structure and functionality [13]. Three main design options
address the key computational issues involved in processing and
storing perception data. First, a lightweight, NoSQL database, is
used to implement the perceptual memory. Second, a thread-
based approach with zero copy transport of messages is used
in implementing the modules. Finally, a multiplexing scheme,
for the processing of the different objects in the scene, enables
parallelization. This way, the system is capable of real time object
detection, tracking and recognition. The developed perception
and perceptual learning capabilities target objects in table-top
scenes, e.g. in a restaurant environment. These capabilities are fully
integrated in the RACE architecture and are running on the PR2
robot used by the project.

This work heavily relies on Point Cloud Library (PCL) functionali-
ties, as will be detailed in Section 4. Because the developed percep-
tion system is a complex network of processing nodes, the whole
paper is organized in such a way that the organization of the sys-
temand themodule functionalities arewell justified andpresented
in detail. However, since PCL is used in nearly every module of the
system, the system could not have been developed easily without
PCL. Therefore, this work shows the current importance of PCL in
building sophisticated 3D perception systems in robotics and other
domains.

The remaining part of this paper is organized as follows. In the
next section, related works are discussed. Memory and cognitive
architecture issues are discussed in Section 3, leading to the choice
of a dualmemory approach and to the development of a perceptual
memory system. The RACE object perception system and the
perceptual learning approach are described in Sections 4 and 5.
Profiling and evaluation of the developed system is the topic of
Section 6. Finally, in Section 7, the conclusion is presented and
future research is discussed.

2. Related work

As robots are expected to increasingly interact and collaborate
closely with humans, robotics researchers need to look at
human cognition as a source of inspiration. Learning is closely
related to memory in human cognition. In the cognitive science
literature, the existence of multiple memory systems is widely
accepted [14,15]. Biological findings about memory and learning
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have served as inspiration for the development of computational
models and applications. Wood et al. [16] present a thorough
review and discussion on memory systems in animals as well as
artificial agents, having in mind further developments in artificial
intelligence and cognitive science.

In [17], an open-ended object category learning system, based
on one-class learning and human–robot interaction, is described.
The authors also proposed a teaching protocol for performance
evaluation in open-ended learning. In [18], a multi-classifier
system with similar goals is described in which a meta-learning
componentmonitors classifier performance, reconfigures classifier
combinations and chooses the classifier to be used for prediction.
These works are based on 2D images collected in static scenes.
Since there is no continuous stream of data being stored, memory
requirements are easily satisfied.

Kirstein et al. [19] proposed a lifelong approach for interactive
learning of multiple categories from 2D perception, in this
case based on vector quantization. This involves selecting the
most crucial features from a series of high dimensional feature
vectors that almost exclusively belong to each specific category.
However, they still follow a standard train-and-test procedure,
which is not plausible in open-ended scenarios. Moreover, the
authors did not provide details on their memory system or
computational architecture. The work is also not integrated in a
hybrid perceptual/semantic processing system.

Kruger et al. [20] use the so-called ‘‘object–action complexes’’
(OAC) to bind objects, actions and attributes associated with an
agent in a causal way. These OACs are learnable/refinable semantic
representations. To ground OACs, an agent requires an object
perception and learning system, such as the onewepropose below.

Heintz et al. [21] propose a hierarchical framework designed
to anchor symbols to continuous streams of sensor data. The
approach dynamically constructs and maintains data association
hypotheses at multiple levels. A traffic monitoring application
is used to illustrate the system. This work proposes a general
approach to the anchoring problem, but does not address object
perception and learning.

Willow Garage developed the Object Recognition Kitchen
(ORK),2 a 3D object recognition system built on top of the Ecto
framework.3 Ecto organizes computation as a directed acyclic
graph, which implies important limitations in the architecture
of the perception system. Moreover, in ORK, training/learning
and detection/recognition are two separate stages. Such approach
is not suitable for developing open-ended learning agents. In
contrast, our system allows for concurrent or interleaved learning
and recognition, and real-time performance is achieved through
nodelets and multiplexing.

Although the Point-Cloud Library (PCL) is increasingly popular,
we do not knowof other systems building upon PCL to integrate 3D
object perception, memory, learning, recognition and interaction.

Aldoma et al. [22] reviewed several state-of-the-art 3D shape
descriptors from PCL to develop 3D object recognition and pose
estimation capabilities. Throughout the paper, the properties,
advantages and disadvantages of different local and global shape
descriptors are considered. They also proposed two pipelines for
object recognition based on PCL. In the first pipeline, an object
view is described by a set of local shape features, which are
computed around keypoints. Afterward, each feature is compared
against all the features of all models in a database using Euclidean
distance. The second pipeline is based on global descriptors,
i.e. high-dimensional representations usually calculated for object

2 http://wg-perception.github.io/object_recognition_core.
3 http://plasmodic.github.io/ecto/.
Fig. 2. Abstract cognitive architectures for hybrid reactive–deliberative robots:
(a) with a single memory system; (b) with a dual memory system.

candidates (subsets of the scene’s point cloud obtained through
segmentation).

Clapés et al. [23] proposed an automatic surveillance system
for user identification and object recognition. In this work, the
position of the RGB-D camera is fixed and the authors employed
a background subtraction strategy to segment users and objects
in the scene. In the case of object detection, the remaining
connected components (those not previously selected as being
part of the user) are considered as object candidates. During the
recognition stage, Fast Point Feature Histogram (FPFH) [24] features
are computed for each detected object view and matched against
the training models. There is no learning process involved.

3. A dual memory approach

Arguably, robots that interact closely with non-expert users
should be [25]: animate, meaning that they react appropriately to
different events, based on a tight coupling of perception and action;
adaptive, to cope with changing users, tasks and environments,
which requires reasoning and learning capabilities; and accessible,
that is, they should be easy to command and instruct, and they
should also be able to explain their beliefs, motivations and
intentions.

In an abstract architecture for intelligent robots, as shown
in Fig. 2(a), a Perception component processes all momentary
information coming from sensors, including sensors that capture
the actions and utterances of the user. A Reasoning component
updates the world model and determines plans to achieve goals.
An Action component reactively dispatches and monitors the
execution of actions, taking into account the current plans and
goals. Action processing ranges from low-level control to high-
level execution management. Finally, a Learning component,
which typically runs in the background, analyzes the trace of
foreground activities recorded in aMemory component and extracts
and conceptualizes possibly interesting experiences. The resulting
conceptualizations are stored back in memory. Each component
in such abstract architecture decomposes into a set of software
modules, possibly distributed across multiple computers.

The reasoning component manipulates primarily semantic
representations of the current world state, goals and plans, that is,
representations that are symbolic and relational in nature. In RACE,
where case studies were carried out in a restaurant environment,
semantic representations describe tables, chairs, table-top objects,
guests, the robot, etc., the categories of these objects, the relations
between them, and the actions and events that change these

http://wg-perception.github.io/object_recognition_core
http://plasmodic.github.io/ecto/
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relations. The semantic information flowing between reasoning,
execution management and memory is typically of small size, and
its processing tends to be slow.

One of the challenges in a project like RACE was to combine
and store semantic and perceptual representations. Standard SQL
databases do not cope well neither with semantic data nor with
perception data, as both tend to be partially unstructured and/or
of variable size. This suggests that modern NoSQL databases [26]
should be used. Semantic data represents the world in terms
of instances, categories and relations between them. A semantic
representation of the state of the world can be simply a set of
subject–predicate–object triples. A special kind of database, the
triplestore, which shares some features with both SQL and graph
databases, is especially optimized to store information in the form
of a set of triples. Triplestores are clearly one of the database types
to take into account when developing memory systems for robots.

An RDF triplestore was in fact the choice for the initial memory
component in the RACE architecture [1]. The contents of this
memory system, which is used as blackboard for all processes,
is semantic in nature. It keeps track of the evolution of both
the internal state of the robot and the events observed in the
environment.

Access to the triplestore is granted via a ROS node that
provides database query and write services for all other nodes
(an interface node). Information exchange is performed using
either publisher/subscriber or client/server mechanisms. ROS
communications are a robust framework [13]. However, when
the size of the messages is large (e.g., when passing 3D point
clouds), the communication between processes is slow. In the
case of perception related data, its large size implies large ROS
messages to be passed between the database interface node and
the other nodes. This is a major constraint, especially considering
that, unlike semantic data, perceptual data flows continuously
at the sensor output frequency. Using a database interface node
creates a bottleneck for accessing the database, since it handles
access requests in a first in, first out basis.

Moreover, although triplestores are well suited for storing
semantic information, they can hardly be considered suited for
storing perception data. In fact, the perception modules will
primarily process numeric information organized in structures like
vectors andmatrices, possibly grouped in sets. For instance the raw
perception data about an object, after detection, can be a 3D point
cloud,which is a set of points described by their 3D coordinates and
possibly RGB information. Based on the point cloud, shape features
can be extracted, and the object can be represented by a set of local
shape features, where each of them can be a 2D shape histogram.
To ensure timely reaction to events in the environment, perception
modules run continuously at the frame rate of the used sensors.
Although raw data tends to be massive (high-dimensional), the
perception modules must run fast, and whatever memory support
they use, must also be lightweight.

In the context of RACE, to accommodate semantic and
perceptual information in the same database, the only option
would be to replace the triplestore with a more generic kind
of database. However, we would loose the special features of
triplestores, which are optimized for storing triples. In alternative,
two different databases can be used, one for semantic information,
and the other for perceptual information. The second alternative,
which seems more promising, allows to use databases that are
well suited for the kinds of data that each will store. In RACE, we
converged to the second option.

Fig. 2(b) shows an abstract architecture diagram in which
we make explicit the dual memory approach. In what concerns
reasoning, we make explicit both interpretation and planning
capabilities. One of the most basic interpretation capabilities is
anchoring, i.e. connecting object symbols used in the semantic
memory to the perception of those objects that is recorded in
the perceptual memory. Interpretation also includes computing
spatial relations between objects to keep an updated relational
model of the scene around the robot. In turn, this scene model can
be taken into account for anchoring.

The perceptual memory contains, not only object perception
data, but also object category knowledge, in the form of perceptual
categories that enable to recognize instances of those categories.
These perceptual categories are learned in an open-ended fashion
with user mediation [27]. The perceptual learning component
primarily uses data from perceptual memory (e.g. shape features
of objects) as well as from the semantic memory (e.g. teaching
instructions from the user). In RACE, the implementation of the
perceptual memory was carried out using a flexible and scalable
NoSQL database which operates in memory (see the next section
for details).

It is worth emphasizing that, although our design choices were
guided primarily by engineering criteria, we converged to a solu-
tion that is biologically and cognitively plausible. In fact, as pre-
viously pointed out, human memory is not a single monolithic
system, but rather a combination of several memory subsystems
specialized for storing different types of information and support-
ing different functionalities [14,15]. In particular, our perceptual
memory resembles the so-called Perceptual Representation Mem-
ory System, used in human cognition for enhancing the identifica-
tion of objects as structured physical–perceptual entities, a process
referred to as perceptual priming [14]. Another key distinction in
cognitive science is between processes that are fast, automatic and
unconscious, and processes that are slow, deliberative and con-
scious [28]. Our dual semantic/perceptualmemory approach is also
in line with these findings.

4. The RACE object perception system

Theworkpresented in this paperwas developed as an extension
to the initial RACE architecture [1] (see also Fig. 1). In particular,
the work focused on extending the perceptual capabilities of the
system. The perception system developed around the perceptual
memory supports the anchoring of object symbols into perceived
object data as well as the grounding of category symbols into
perceptual categories. Since the initial integration of the object
perception system, the RACE system included basic capabilities
for object symbol anchoring, allowing perceived objects to be
represented not only in the perceptual memory, but also in the
semantic memory. The object perception system targets table-
top scenes in a restaurant scenario. This system became a salient
portion of the full RACE system [2].

4.1. Architecture

The developed perception system is composed of six functional
components: Object Detection, Multiplexed Object Perception, User
Interface, Reasoning and Interpretation, Memory and Conceptualiza-
tion. These are represented by the dashed rectangles in Fig. 3. Func-
tional components in Fig. 3 correspond to those highlighted in bold
in the high-level RACE architecture (Fig. 1) and to the perception,
interpretation, memory and perceptual learning components in
Fig. 2(b). In turn, each functional component contains one or more
software modules (solid line rectangles in Fig. 3). Arrows signal
the exchange of information between softwaremodules. Each soft-
waremodule is organized into a ROSpackage andwill typically cor-
respond to a node or a nodelet4 at runtime.

4 http://wiki.ros.org/nodelet.

http://wiki.ros.org/nodelet
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Fig. 3. Architecture of the developed object perception and perceptual learning system.
The implementation of the perceptual memory was carried out
using LevelDB, a lightweight, flexible and scalable NoSQL database
developed by Google.5 LevelDB is a key–value storage database that
provides an ordered mapping from string keys to string values.
In addition, LevelDB operates in memory and is copied to the
file system asynchronously. This significantly improves its access
speed.

4.2. The PCL foundation of this work

This work heavily relies on PCL [29]6 functionalities. Table 1
lists the PCL classes used by the object perception and perceptual
learning system along with values we typically use for the main
configuration parameters. The reason why they are used as well
as the modules in which they are used are also given. It can be
seen from Table 1 that several PCL functionalities are used by our
system. For point cloud size reduction, we use both conditional
removal filter as well as voxel grid filters. Table planes are detected
using RANSAC, and their boundaries extracted by estimating the
2D convex hull. Points belonging to tabletop objects are extracted
using the polygonal prism extraction method. Tabletop objects are
segmented using Euclidean cluster extraction. The pose of newly
detected tabletop objects is estimated using PCA, which is useful
to define well oriented bounding boxes. Objects are tracked over
time using the particle filter tracker. Object views are represented
by spin image feature descriptors, and object recognition uses an
optimized view-to-view distance calculation based on K-d trees.

Since PCL is used in nearly every module of the system, the sys-
tem could not have been developed easily without PCL. This work
shows the current importance of PCL in building sophisticated 3D
perception systems in robotics and other domains.

5 https://code.google.com/p/leveldb/.
6 http://pointclouds.org/.
4.3. Object perception

An RGB-D sensor is used for the perception of both the user
and the table-top scene. The starting point for the perception
of the table-top scene is the Table-Top Segmenter (TTS) module,
which uses ROS7 and PCL functionalities to isolate (partial) point
clouds of the objects placed on the table (see Table 1) [29,39]. The
Object Detector (OD) module periodically requests the current list
of objects from TTS. Then, OD will check if any of those objects is
already being tracked. To do this, OD matches the point clouds of
all objects on the table with the estimated bounding boxes of all
objects currently being tracked. The percentages of points of the
tabletop objects that lie inside the bounding boxes of the tracked
objects are computed. A large percentage indicates that the tracked
object and the segmented object are the same. Point clouds that
cannot be matched with any of the tracked bounding boxes are
assumed to represent new objects just added to the scene. ODwill
assign a new identifier (track_id) to each newly detected object.
Also for each new object, OD will launch an object perception
pipeline which contains three modules: Object Tracking, Feature
Extraction and Object Recognition. Fig. 4 shows a situation where
two objects are segmented and tracked, i.e., they have bounding
boxes around them.

Object Tracking (OT) is responsible for keeping track of the target
object over time while it remains visible. Tracking is an essential
base for anchoring. On initialization, OT receives the point cloud
of the detected object and computes a bounding box for that point
cloud, the center of which defines the pose of the object. A particle
filter tracking approach from PCL (see Table 1) is then used to
predict the next probable pose of the object. In each cycle, OT
sends out the tracked pose of the object both to OD (as mentioned
above) and to the Interpretation component. At a lower rate, OT

7 http://wiki.ros.org/tabletop_object_detector.

https://code.google.com/p/leveldb/
http://pointclouds.org/
http://wiki.ros.org/tabletop_object_detector
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Table 1
PCL functionalities used in the RACE object perception and perceptual learning system. The modules listed in the third column are those
represented in Fig. 3.

PCL class [refs.]/parameters Usage in RACE RACE modules

ConditionalRemoval Removing points outside a 3D boxa Object Detector
Object Tracker

VoxelGrid [30]
voxel size = 0.015 m

Downsampling a point cloudb Object Detector
Object Tracker

ConvexHull [31,32] Convex hulls of tablesc Tabletop Segmenter

RandomSampleConsensus [33]
RANSAC iterations = 200

Table plane detectiond Tabletop Segmenter

ExtractPolygonalPrismData
minimum z = 0.01 m
maximum z = 0.6 m

Tabletop object detectione Object Detector

EuclideanClusterExtraction [34]
minimum cluster size = 10
maximum cluster size = 10,000
clustering step = 0.08 m

Object segmentationf Object Detector

PCA [35] Estimating the orientation of objectsg Object Tracker

ParticleFilterTracker [36]
max number of particles = 200

Tracking tabletop objects using RGBDh Object Tracking

SpinImageEstimation [37]
support length = 0.1 m
image width = 8, support angle = 90°

Features for representing object viewsi Feature Extractor

KdTree [38]
K = 1

Computation of distance between viewsj Object Recognizer
Object Conceptualizer

a http://pointclouds.org/documentation/tutorials/remove_outliers.php.
b http://pointclouds.org/documentation/tutorials/voxel_grid.php.
c http://www.pointclouds.org/documentation/tutorials/hull_2d.php.
d http://pointclouds.org/documentation/tutorials/planar_segmentation.php.
e http://docs.pointclouds.org/1.7.1/classpcl_1_1_extract_polygonal_prism_data.html.
f http://www.pointclouds.org/documentation/tutorials/cluster_extraction.php.
g http://pointclouds.org/documentation/tutorials/normal_estimation.php.
h http://pointclouds.org/news/2012/01/17/tracking-3d-objects-with-point-cloud-library/.
i http://docs.pointclouds.org/1.7.0/classpcl_1_1_spin_image_estimation.html.
j http://pointclouds.org/documentation/tutorials/kdtree_search.php.
sends the point cloud of the object (i.e. containing the points inside
the predicted bounding box) to Feature Extraction. As expected,
the system is sensitive to the speed with which objects move.
If an object moves very fast, tracking is lost, then a new object
is detected, and a new object perception pipeline is initiated.
Nonetheless, our experiments have shown that the system is able
to cope with users picking up the objects andmoving them around
in natural movements with typical speeds.

The Feature Extraction (FE) module computes and stores object
representations in the perceptual memory. Objects are repre-
sented by sets of local shape features computed in certain key-
points. For efficiency reasons, the number of keypoints should be
much smaller than the total number of points. To select keypoints,
a voxelized grid approach from PCL is used (see Table 1). We se-
lect, for each voxel, the point that is closest to the voxel center [3].
Thus, there will be one keypoint per voxel. The surrounding shape
in each keypoint is described by a spin-image [37]. Spin-images
are pose invariant, and therefore a suitable local shape descriptor
for 3D perception in service robots. They are computed by project-
ing the 3D surface points of the object to the keypoint’s tangent
plane We use an implementation of spin-image estimation avail-
able from PCL (see Table 1).

In addition to storing object representations in the perceptual
memory, FE also sends them to Object Recognition (OR). The
perceptual categories learned so far and stored in the perceptual
memory are used by OR to predict the category of the target object.
OR is a low frequency module, which runs at 1 Hz. Accordingly,
FE receives object point clouds from OT and sends the extracted
representations for recognition at the same frequency. Thus, only
Fig. 4. Visualization of tracking, pointing and labeling.

OT itself uses object point clouds at the frame rate of the sensor
(30 Hz).

For better representing an object, it is important to store
different views, which is possible when the object is moved (and
thus its pose relative to the sensor changes). In contrast, storing
all object representations computed by FE while the object is
staticwould lead to unnecessary accumulation of highly redundant
data. On a different line, it is important to minimize noise effects
possibly affecting object views. Thus, to optimize memory usage
while keeping potentially relevant and distinctive information, a
heuristic is used to select key views, that is, object views that should
be stored. Whenever the tracking of an object is initialized, or
when it becomes static again after being moved, three consecutive
object views are stored, provided that the hands of the user are

http://pointclouds.org/documentation/tutorials/remove_outliers.php
http://pointclouds.org/documentation/tutorials/voxel_grid.php
http://www.pointclouds.org/documentation/tutorials/hull_2d.php
http://pointclouds.org/documentation/tutorials/planar_segmentation.php
http://docs.pointclouds.org/1.7.1/classpcl_1_1_extract_polygonal_prism_data.html
http://www.pointclouds.org/documentation/tutorials/cluster_extraction.php
http://pointclouds.org/documentation/tutorials/normal_estimation.php
http://pointclouds.org/news/2012/01/17/tracking-3d-objects-with-point-cloud-library/
http://docs.pointclouds.org/1.7.0/classpcl_1_1_spin_image_estimation.html
http://pointclouds.org/documentation/tutorials/kdtree_search.php
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not detected near the object. In case the hands are detected near
the object, storing key views is postponed until the hands are
withdrawn. OT is responsible for marking object views as key
views. Then, when FE receives a point cloudmarked as key view, it
will store the respective representation in the perceptual memory.

Object recognition results are also written to the perceptual
memory, where the Interpretation component can fetch them
to support symbol anchoring. The current implementation is
capable of anchoring symbols that refer to objects only while these
remain visible. Further work is ongoing to enable anchoring object
symbols when the visual tracking is lost.

4.4. User perception

The perceptual memory supports, not only the anchoring of
object symbols into perceivedobject data, but also the grounding of
category symbols into perceptual categories. Perceptual categories
are acquired with user mediation, that is, the user points to
objects andprovides their category names. Verbal input is provided
through interactive markers in RVIZ, a 3D visualization tool for
ROS. Point gesture recognition is based on tracking the skeleton
of the user. The Skeleton Tracker (ST) module is the one available
in OpenNI.8 It tracks the user skeleton pose over time based on
RGB-D data. The skeleton pose information is passed to the Gesture
Recognizer (GR) module, which computes a pointing direction.
Currently, the pointing direction is assumed to be the direction
of the right forearm (see an example in Fig. 4). The pointing
direction is then passed to the Interpretation component. Upon
receiving verbal input, the Interpretation component checks if
the received pointing direction intersects the bounding box of
any of the objects currently on the table according to the world
state recorded in the semantic memory. If that is the case, then a
teaching instruction is recorded in the semantic memory, stating
that the target object was taught to belong to the given category.
Teaching instructions trigger perceptual learning to create and/or
update object categories.

4.5. Addressing computational issues

In contrast with the reasoning processes supported by the
semantic memory, the processes developed around the perceptual
memory must run fast to cope with the continuous stream of
massive sensor data. As pointed out, one of the reasons for
using LevelDB to implement the perceptual memory is the fact
that it operates in RAM. There is, however, the limitation that
simultaneous access to LevelDB is only possible by threads within
the same process. To comply with this constraint while keeping
ROS as the framework for the newly developed modules, we
use ROS nodelets.9 Nodelets, which run as threads of a single
process, were designed to provide a way of concurrently running
differentmodules with zero copy transport between publisher and
subscriber calls (as an example, see [40]). The motivation for ROS
nodelets comes from systemswith high throughput data flows as is
common in perception systems. It is not surprising, therefore, that
the developers of PCL andROSnodelets are the same. In our system,
in addition to handling high throughput data flows, nodelets come
handy to implement modules that need to simultaneously access
the perceptual memory (LevelDB).

Another way of optimizing perception is to parallelize com-
putations. In our system, instead of tracking all objects in a sin-
gle tracking module, there is a tracker for each object. Similar

8 http://wiki.ros.org/openni_tracker.
9 http://wiki.ros.org/nodelet.
strategy is used for feature extraction and object recognition. In
other words, object perception is designed to be multiplexed. Ev-
ery time a new object is detected, a corresponding instance of the
object perception pipeline (see Fig. 3) is launched. Thus there are
as many object perception pipelines as the number of currently
tracked objects, and each pipeline targets a specific object. Since
the modules in an object perception pipeline run as independent
nodes/nodelets, they can be distributed to different CPU cores, thus
improving the overall computational efficiency of perception. Note
that the three modules in the object perception pipeline are tradi-
tionally amongst the heaviest in terms of computational require-
ments. The parallelization is aimed at the hotspot or bottleneck of
the computation flow and takes full advantage of modern multi-
core machines. In fact, experiments with a non-multiplexed ver-
sion of this architecture show that it cannot run in real-time.

We can easily configure the perception and perceptual learn-
ing modules to be launched with different runtime configurations,
that is, using ROS nodelets only, ROS nodes only, or a combina-
tion of both. By default, the object perception pipelines, the per-
ceptual learning module and the perceptual memory run as a set
of nodelets of a single process. When debugging is necessary, we
use a configuration where all modules run as nodes. In this con-
figuration, the modules access the perceptual memory (LevelDB)
using ROS services provided by a database interface node.

5. Perceptual learning

Although other kinds of perceptual categories could be consid-
ered, perceptual learning currently focuses on object categories.
We approach object category learning from a long-term perspec-
tive and with emphasis on open-endedness, i.e. not assuming a
pre-defined set of categories [17,18]. For example, when learning
how to serve a coffee [1], if the robot does not know how a mug
looks like, it may ask the user to point to one. Such situation pro-
vides an opportunity to collect an experience for learning.

Concerning category formation, a purely memory-based learn-
ing approach is adopted, inwhich a category is represented by a set
of views of instances of the category. The recording of a teaching
instruction in the semantic memory triggers the perceptual learn-
ing component. If a new category was taught, the key views of the
target object stored by the feature extraction module (see above
Section 4.3) are used to initialize the category. If the category is
previously known, the key views are added to the existing cate-
gory representation only if the agent cannot correctly recognize
the category of the target object. The current approach differs from
our recent previous work [3,10], in the distance measures used for
classification, as will be pointed out.

In order to estimate the dissimilarity between a target object
view, t, and an object view, o, contained in a category model in the
perceptual memory, the following distance function is used:

D (t, o) =

q
l=1

mink d(tl, ok)

q
, (1)

where tl, l = 1, . . . , q, are the spin-images of the target object,
ok represents the spin-images of the model object, and q is the
number of target object’s spin-images (see Section 4.3 and [37]
on spin-images). Since a linear search in high-dimensional spaces
has a high computational cost, which is not suitable in the case of
an autonomous service robot, a fast approximate nearest neighbor
search based on k-d trees [41] from PCL (see Table 1) is used
instead of a traditional nearest neighbor search. The next step is
to compute the object–category distance between the target object,

http://wiki.ros.org/openni_tracker
http://wiki.ros.org/nodelet
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t, and a certain category, C, as the average distance of the instances
of C to t:

OCD (t, C) =


u∈C

D (t,u)

n
, (2)

where n = |C | is the total number of category instances.
In object recognition, instances are more spread in some

categories than in others. Normalizing distances will help to
prevent misclassification. Distance normalization is based on the
following intra-category distance:

ICD(C) =


u∈C


v∈C,v≠u

D (u, v)

n . (n − 1)
. (3)

The normalized distance of target object, t, to the category, C,
ND(t, C), is computed as follows:

ND (t, C) =
2 × OCD(t, C)

ICD(C) + ICD
(4)

where ICD is the average of the intra-category distances of all
categories, i.e. ICD =

m
i=1 ICD(Ci)/m, and m is the number of

categories.
Finally, the target object is classified based on the minimum

normalized distance of the known categories to the object. If,
for all categories, the normalized distance is larger than a given
Classification Threshold, CT , then the object is predicted to belong
to an unknown category10:

Category(t) =


unknown, if minC ND (t, C) > CT
argminC ND (t, C) , otherwise. (5)

In open-ended environments where some objects may belong
to not yet known categories, recognizing that an object belongs
to an unknown category is important. It may prevent the agent
from making further decisions based on wrong assumptions. On
the other hand, detecting that an object belongs to an unknown
category may be used by the agent to trigger some exploration or
interaction process leading to the acquisition of a new category.

In our recent previouswork [3,10], the object–category distance
was measured as the minimum distance between the target ob-
ject and known instances of a given category. This measure was
then normalized by an intra-category distance. If the normalized
measurewas larger than a given classification threshold, the target
object could not belong to that category. The combination of min-
imum distance with normalization and threshold led to bad deci-
sions in some limit situations. The new formulation here presented
solves these problems. In addition, by taking into account the aver-
age intra-category distance, the current normalization is alsomore
stable than the previously used normalization method.

6. Profiling and evaluation

This section presents three sets of results. First, based on a
session where users manipulate objects on a table and interact
with the developed perception and perceptual learning system,
we carry out a profiling analysis of the main modules of the
system. Second,we present an off-line evaluation of the perceptual
learning approach under different configurations of the system.
Finally, we report on open-ended learning experiments carried out
on a public domain dataset.

10 By default, CT = 2.0 is used. See Section 6.2 for an evaluation of alternatives.
Table 2
Sequence of events in the experiment (see video).

Time (s) Event Description

25 T1 in A Mug (T1) is placed on the table
40 T1 is a Mug T1 is labeled as Mug
60 T2 in A Vase (T2) is placed on the table
75 T2 is a Vase T2 is labeled as a Vase
90 T3 in Another Mug (T3) is placed on the table

135 T3 out T3 is removed from the table
140 T1 out T1 is removed from the table
145 T2 out T2 is removed from the table
165 T4 in A Plate (T4) is placed on the table
170 T4 is a Plate T4 is labeled as a Plate
175 T5 in A Bottle (T5) is placed on the table
190 T5 is a Bottle T5 is labeled as a Bottle
210 T6 in A Spoon (T6) is placed on the table

6.1. Profiling

For profiling themodules, two human users interactedwith the
system in a short session of nearly 4 min (Table 2). All raw data
from theRGB-D sensor aswell as verbal input from theusers during
the session was recorded in a rosbag, which was then used to test
different configurations of our system. Note that, when the system
starts, the set of categories known to the system is empty. There is
a video11 that illustrates the behavior of the main modules of the
system, from user/object tracking to learning and recognition.

As discussed in Section 4.5, nodelets can significantly improve
efficiency since they support zero copy transport and they enable
simultaneous access to LevelDB. Fig. 5 compares the processing
time of the object perception modules. The tracker modules
(Fig. 5(a) nodes and (d) nodelets) tend to display a stable processing
time shortly after their initialization. This is explained by the fact
that the size of the input data is more or less stable over time. In
this case, nodelets are more efficient when compared to nodes:
for example for pipelines 1–3 in the 100–150 time interval, nodes
display an average processing time of 45ms, compared to 25ms in
the case of nodelets. Since the trackers do not access the database,
themain factor contributing to the increase in efficiency is the zero
copy transport. Themessages that are received (sensor point cloud)
and sent (partial object point cloud) by the trackers are of large size,
which explains why zero copy transport enables such a significant
improvement. The feature extraction modules (Fig. 5(b) nodes and
(e) nodelets) showadifferent behavior. Thesemodules periodically
compute the spin-image representation from the partial object
point cloud. At some points, the point cloud is signaled to belong
to a key view, which will trigger the writing of that representation
to the perceptual memory.

The curves show these points in time with a rapid increase in
processing time. Nodelets also display these peaks, but because
access to the database is much faster, the peaks are smaller, as
is the average processing time. The object recognition modules
(Fig. 5 (c) nodes and (f) nodelets) receive a representation of the
current object view from the feature extraction, and compare it
against the representations of all known category views. Thus, they
are continuously reading the database in the search for an update
to the known categories. As a result, the larger the size of the
database, the slower the reading of the complete set of categories.
However, in the case of nodelets, this deterioration is minor when
compared with nodes, since accessing the database is much more
efficient.

Fig. 6 shows the memory usage of the system. Notice that at
the end of the experiment the memory size would be above 1 MB
if all object point clouds extracted by the trackers would be stored

11 The video can be found at http://youtu.be/jLJqY2fKTdI.

http://youtu.be/jLJqY2fKTdI
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Fig. 5. Processing time in the object perception pipelines in the video sequence, comparing nodes (left column) with nodelets (right column). Six objects appear in the video,
corresponding to pipelines 1 through 6. (a) tracker nodes; (b) feature extraction nodes; (c) object recognition nodes; (d) tracker nodelets; (e) feature extraction nodelets;
(f) object recognition nodelets.
(roughly 5 Kb/s). In a continuously running system, this rate of data
accumulation would be hard to handle, and would not bring any
real benefit. The total size of the point clouds of all the selected key
views ismuch smaller (one order ofmagnitude in this experiment).
The data actually accumulated in memory (shape representations
based on spin-images) is even smaller.
Fig. 7 shows the evolution of object recognition performance
throughout the experiment. When the first Mug (T1) is placed
on the table the system recognizes it as Unknown. After some
time, the instructor labels T1 as a Mug and the system starts
displaying a precision of 1.0. However, the recall score is under 0.2,
because the system classified T1 as Unknown several times before
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Table 3
Average object recognition performance (F1measure) for different parameters: voxel size (VS), imagewith (IW),
support length (SL) and classification threshold (CT).
Fig. 6. Perceptual memory usage during the experiment, in logarithmic scale.
The blue (upper) curve represents the total size of all point clouds of object
views extracted by the trackers. The green (middle) curve represents the total
accumulated size of all point clouds of key views. The red (bottom) curve represents
the actual perceptual memory content (shape-based representations of key views).

the user labeled the object. After the labeling, the recall starts
improving continuously. The instructor then places a Vase (T2) on
the table. Because the category Vase has not been taught yet, the
performance goes down. After labeling T2 as Vase, performance
starts going up again. When a second Mug (T3) enters the scene,
the system can correctly recognize it and the scores continue to
increase. Then, a Plate (T4) enters the scene, causing recall to drop.
Successively, the Plate is taught, a Bottle is placed on the table and
then taught, and eventually performance starts goingup again. This
illustrates the process of acquiring categories in an open-ended
fashion with user mediation.

6.2. Off-line evaluation of the perceptual learning approach

More systematic experiments have been performed to evaluate
the object category learning and recognition approach. An object
dataset has been acquired, which contains 339 views of 10
categories of objects: bottle, bowl, flask, fork, knife,mug, plate, spoon,
teapot and vase. In addition, there are 31 views of unknown and
false objects. The point clouds of the objects were segmented using
an offline version of the Object Detection (OD) module. Detected
objectsweremanually labeled. The performance of the systemwas
measured using a leave-one-out cross validation scheme.

A total of 24 experiments were performed for different values
of four parameters of the system, namely the voxel size (VS) which
is related to number of key points extracted from each object view,
the image width (IW) and support length (SL) of spin images, and
the classification threshold (CT). Results are presented in Table 3.
The parameters that obtained the best average F1 score were
selected as the default system parameters. They are the following:
VS = 0.03, IW = 8, SL = 0.1 and CT = 2. The F-measure of
the proposed systemwith the default parameterswas 0.94. Results
show that the overall performance of the recognition system is
Fig. 7. Object recognition performance (precision, recall and F-measure) during the
experiment. Each point in these curves is computed based on the object recognition
results in the previous 20 s.

promising. Spin images are capable of collecting distinctive traits
of the local surface patches of each object.

6.3. Open-ended learning evaluation

Although there are well established methodologies to evaluate
learning systems, e.g., k-fold cross validation, leave-one-out, etc.,
these approaches follow the classical train-and-test procedure,
i.e., two separate stages, training followed by testing. Training
is accomplished offline, and once it is complete the testing is
performed. These methodologies are not well suited to evaluate
open-ended learning systems, because they do not abide to the
simultaneous nature of learning and recognition and because the
number of categories must be predefined.

A teaching protocol for evaluating open-ended learning systems
was proposed in [17,42]. The protocol relies on three basic actions
to interact with an object recognition system: teach, used for
teaching a new object category; ask, used to ask the systemwhat is
the category of an object view; and correct, used for providing the
system with an additional (labeled) view of an existing category.
The idea is to continuously ask the system to recognize previously
unseen views of known categories and provide corrections when
needed. This way, the system is trained, and at the same time the
recognition performance of the system is continuously estimated.
A simulated teacher was developed to automate experiments
following the teaching protocol [3]. To operate, the simulated
teacher must be connected to a data-set of object views. In this
work, we use the Washington RGB-D Object Dataset [43]. This
dataset contains images of 300 common household objects from
51 categories. In the experiments presented, the system begins
without category knowledge, i.e., it knows zero categories at start,
and the training instances are gradually given to the system.
Thus, object category models are incrementally built. Although
the evaluation protocol is designed to test the system only using
views of known categories, the system is designed to identify



624 M. Oliveira et al. / Robotics and Autonomous Systems 75 (2016) 614–626
a

b

Fig. 8. (a) Simulated teacher experiment no. 3; (b) protocol success versus the number of learned categories, for the same experiment.
Table 4
Summary of simulated teacher experimentsa .

Exp# #Iterations #Categories #Instances GS APS

1 706 22 14.55 0.65 0.76
2 217 13 8.69 0.68 0.86
3 533 24 10.46 0.68 0.74
4 699 21 15.57 0.63 0.74
5 747 29 11.31 0.69 0.79
6 711 31 9.83 0.72 0.75
7 1041 36 12.06 0.70 0.77
8 252 13 10.08 0.64 0.87
9 412 19 10.37 0.68 0.81

10 393 20 8.9 0.70 0.84
a Exp#, experiment number; #Categories, number of categories learned;

#Iterations, number of iterations in the experiment; #Instances, average number of
instances per category at the endof the experiment; GS, global success; APS, average
protocol success.

unknown categories when the views to be recognized are too far
from all models in memory. Therefore, we use F-measure, which
combines precision and recall, as the indicator of recognition
performance. Protocol success is a local F-measure, computed in
a sliding window of size 3n (as defined in [42]), where n is the
number of categories that have already been introduced. According
to the teaching protocol, the system is ready to learn a new object
categorywhen the protocol success is above a threshold (0.67 in all
experiments presented), and at least one instance of every known
category has been tested. Simulated teacher experiments can be
used to evaluate the performance of open-ended learning systems
using several measures, namely:

• The number of learned categories at the end of an experiment,
an indicator of how much the system is capable of learning;

• The number of question/correction iterations required to learn
those categories and the average number of stored instances per
category, indicators of time andmemory resources required for
learning;

• Global success, an F-measure computed using all predictions in
a complete experiment, and the (local) protocol success defined
above, indicators of how well the system learns.

Since the order of introducing new categories may affect the
performance of the system, ten experiments were performed
using random sequences of introduction of categories. Table 4
summarizes the 10 experiments. Fig. 8(a) shows the evolution of
the teaching protocol success in experiment 3. The introduced
categories are signaled in the plot. Fig. 8(b) shows the protocol
success as a function of the number of learned categories.

Fig. 9(a) shows the global success (i.e. since the beginning of the
experiment) as a function of the number of learned categories. In
this figurewe can see that the global success decreases asmore cat-
egories are learned. This is expected since the number of categories
known by the system makes the classification task more difficult.
Finally, Fig. 9(b) shows the number of learned categories as a func-
tion of the number of protocol iterations. This gives a measure of
how fast the learning occurred in each of the experiments.

7. Conclusions

This paper describes the 3D object perception and learning sys-
tem developed for the RACE project. The system is designed to de-
tect and track tabletop objects. It is also capable of classifying the
tracked objects according to the object categories that are known
by the system. Furthermore, this object category knowledge may
be enhanced in real time through an RVIZ interface that enables
humans to teach additional object categories. The paper describes
a dual memory approach in which two databases with different
characteristics are used to store semantic and perceptual data. The
proposed nodelet software architecture is designed for efficiency
purposes, since it enables actual simultaneous access to the per-
ceptual database. Results show that the nodelet based approach
is significantly faster when compared to the standard node ap-
proach. In addition, we also propose a multiplexed object percep-
tion pipeline, in which a set of nodes is launched during execution
to handle each newly detected object. This mechanism allocates
separate computational resources for each tracked object, which
creates a dynamic computation graph in run time, and facilitates
the parallelization of processing. As a consequence, the system is
capable of simultaneously tracking several objects moving in the
scene. The RACE object perception and learning system contains a
large number of nodes that process 3D data for different purposes,
e.g., segmentation, feature extraction, tracking, etc. Thus, it also
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Fig. 9. System performance during simulated user experiments: (a) global success vs. number of learned categories, a measure of how well the system learns; (b) number
of learned categories vs. number of question/correction iterations, represents how fast the system learned object categories.
serves as a good example of how PCL functionalities can be used
to create an efficient and complex 3D perception system.

This paper presented a perceptual memory system designed to
enable grounding of object symbols and object category symbols
in an open ended fashion. This system is integrated in a dual mem-
ory architecture which also includes a semantic memory compo-
nent. The dual memory approach contributes to the optimization
of both the semantic and perceptual components, and is in line
with findings in cognitive science regarding the human memory
system. The perceptual memory implementation was carried out
using a lightweight, NoSQL database which, when combined with
a nodelet based infrastructure, allows the simultaneous access of
several modules to the storage. The system also supports runtime
multiplexing of the object perception pipelines, which leads to
the parallelization of the bottlenecks in the data processing. Re-
sults show that the perceptual memory combined with a nodelet
infrastructure significantly outperforms a node based approach.
Thepresented architecture can seamlessly integrate user-mediated
experience acquisition, conceptualization and recognition. The
system is open-ended since it can continuously acquire new ob-
ject categories. Because the system is open-ended and receives a
continuous stream of data, ongoingwork is using data stream clus-
tering methods to update a dictionary of local features [44].
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